Qualitative Analysis of Gene Regulatory Networks using Network Motifs

نویسندگان

  • Souhei Ito
  • Takuma Ichinose
  • Masaya Shimakawa
  • Naoko Izumi
  • Shigeki Hagihara
  • Naoki Yonezaki
چکیده

We developed a method for analysing gene regulatory networks in a purely qualitative fashion. Behaviours of networks are captured as transition systems using propositions for gene states (ON or OFF), and those related to threshold values for gene activation/inhibition. Possible behaviours of networks are specified by logical formulae in Linear Temporal Logic (LTL). With this specification, it is possible to check whether some/all behaviours satisfy a biological property, which is difficult for quantitative analyses like an ordinary differential equation approach. Our method uses satisfiability checking of LTL. Due to the complexity of LTL satisfiability checking, analyses of large networks are generally intractable in this method. To tackle this issue, in this paper, we propose approximate analysis method in which we specify behaviours in simpler formulae which compress/expand the possible behaviours of networks. We present approximate specifications for some network patterns called network motifs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

متن کامل

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

Using Network Motif Analysis to Explore Transcriptional Regulatory Systems

Biological processes are the products of highly complex and dynamical systems. As the molecular characterization of cellular activity has moved to the systems level, the various interactions between proteins, DNA, between genes have come to be appreciated within networks with intricate circuitry describing relationships between gene expression and the cell environment 1. Recent study has sugges...

متن کامل

A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human

MOTIVATION Interplays between transcription factors (TFs) and microRNAs (miRNAs) in gene regulation are implicated in various physiological processes. It is thus important to identify biologically meaningful network motifs involving both types of regulators to understand the key co-regulatory mechanisms underlying the cellular identity and function. However, existing motif finders do not scale ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013